A census of one-factorizations of the complete 3-uniform hypergraph of order 9

نویسندگان

  • Mahdad Khatirinejad
  • Patric R. J. Östergård
چکیده

The one-factorizations of the complete 3-uniform hypergraph with 9 vertices, K 9 , are classified by means of an exhaustive computer search. It is shown that the number of isomorphism classes of such one-factorizations is 103 000.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Embedding Factorizations for 3-Uniform Hypergraphs II: $r$-Factorizations into $s$-Factorizations

Motivated by a 40-year-old problem due to Peter Cameron on extending partial parallelisms, we provide necessary and sufficient conditions under which one can extend an r-factorization of a complete 3-uniform hypergraph on m vertices, K3 m, to an s-factorization of K3 n. This generalizes an existing result of Baranyai and Brouwer–where they proved it for the case r = s = 1.

متن کامل

On the numbers of 1-factors and 1-factorizations of hypergraphs

A hypergraph G = (X,W ) is called d-uniform if each hyperedge w is a set of d vertices. A 1-factor of a hypergraph G is a set of hyperedges such that every vertex of the hypergraph is incident to exactly one hyperedge from the set. A 1factorization of G is a partition of all hyperedges of the hypergraph into disjoint 1-factors. The adjacency matrix of a d-uniform hypergraph G is the d-dimension...

متن کامل

Decompositions of complete 3-uniform hypergraphs into small 3-uniform hypergraphs

In this paper we consider the problem of determining all values of v for which there exists a decomposition of the complete 3-uniform hypergraph on v vertices into edge-disjoint copies of a given 3-uniform hypergraph. We solve the problem for each 3-uniform hypergraph having at most three edges and at most six vertices, and for the 3-uniform hypergraph of order 6 whose edges form the lines of t...

متن کامل

Directed domination in oriented hypergraphs

ErdH{o}s [On Sch"utte problem, Math. Gaz. 47 (1963)] proved that every tournament on $n$ vertices has a directed dominating set of at most $log (n+1)$ vertices, where $log$ is the logarithm to base $2$. He also showed that there is a tournament on $n$ vertices with no directed domination set of cardinality less than $log n - 2 log log n + 1$. This notion of directed domination number has been g...

متن کامل

Decomposing complete 3-uniform hypergraphs into Hamiltonian cycles

Using the Katona-Kierstead definition of a Hamiltonian cycle in a uniform hypergraph, we continue the investigation of the existence of a decomposition of the complete 3-uniform hypergraph into Hamiltonian cycles began by Bailey and Stevens. We also discuss two extensions of the problem: to the complete 3-uniform hypergraph from which a parallel class of triples has been removed, and to the com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 47  شماره 

صفحات  -

تاریخ انتشار 2010